Agilent P940xA/C
 Solid State PIN Diode Switches

P9402A 100 MHz to 8 GHz SPDT PIN switch P9402C 100 MHz to 18 GHz SPDT PIN switch P9404A 100 MHz to 8 GHz SP4T PIN switch P9404C 100 MHz to 18 GHz SP4T PIN switch

Technical Overview

Key Features

- Dramatically increase throughput with ultra fast switching speed of <450 ns
- Reduce test system set up costs with the long switching life
- Minimize cross-talk with exceptionally high port-toport isolation of $>80 \mathrm{~dB}$
- Optimize your system dynamic range with low insertion loss switches, 2.5 dB at 4 GHz , SP4T

Agilent Technologies

Description

Agilent P940xA/C absorptive solid state switches, based on PIN diode technology, provide superior performance in terms of isolation, insertion loss and return loss across a broad operating frequency range. The P940xA/C are particularly suitable for high-speed RF and microwave switching applications in instrumentation, communication, radar, switch matrices as well as many other test systems.

The P9402A/C switches have a SPDT PIN diode individual control switch IC and discrete shunt pin diodes on the RF path. The discrete shunt pin diodes enhance the isolation between ports. The switch's individual control pin controls the port between the ON and OFF state. With these features, the switch provides good port match even when it is off. Hence, this SPDT switch has three switching states, switching between the common port and port 1 or port 2 or all ports Off.

The P9404A/C switches have a SP4T PIN diode switch IC and discrete shunt pin diodes on the RF path. The P9404A/C SP4T switches have five switching states, switching between the common port to any one of the 4 output ports or, all ports to the OFF state (terminated at 50 Ohm).

Application

Solid state switches can be used in a large number of applications, increasing system flexibility and simplifying system design. They are preferred in test systems where speed is critical.

ENA
E5071 network analyzer

Filter bank

Figure 1. Filter bank test setup
The figure above shows a typical test setup for filter bank testing. Two SP4T absorptive PIN switches are needed for the S parameter measurement with ENA. Mobile handset and semiconductor manufacturers use PIN switches because fast switching speeds are needed for high volume testing of filters e.g. SAW filters. P940xA/C are particularly suitable for the application due to two reasons; the low insertion loss optimizes the dynamic range, and TTL control enables the switches to be controlled easily, using +5 V or OV.

Specifications

Specifications refer to the performance standards or limits against which the solid state switches are tested.
Typical characteristics are included for additional information only and they are not specifications.
These are denoted as "typical", "nominal" or "approximate" and are printed in italic.

RF Specifications

SPDT

Model	P9402A	P9402C
Frequency range	100 MHz to 8 GHz	100 MHz to 18 GHz
Insertion loss	$<2.5 \mathrm{~dB}(100 \mathrm{MHz}$ to 4 GHz$)$	$<3.5 \mathrm{~dB}(100 \mathrm{MHz}$ to 8 GHz$)$
	$<3.2 \mathrm{~dB}(4 \mathrm{GHz}$ to 8 GHz$)$	$<4 \mathrm{~dB}(8 \mathrm{GHz}$ to 18 GHz$)$
Isolation	80 dB	80 dB
Return loss (ON \& Common Port)	$>15 \mathrm{~dB}$	$>10 \mathrm{~dB}$
Return loss (OFF Port)	$>15 \mathrm{~dB}$	$>10 \mathrm{~dB}$
Switching speed rise/fall		$380 \mathrm{~ns} \mathrm{(typical)}$
Characteristic impedance	50Ω (nominal)	$380 \mathrm{~ns} \mathrm{(typical)}$
Connectors	SMA (f)	50Ω (nominal)

1. Switching speed is based on 50% TTL to 90% RF.

SP4T

Model	P9404A	P9404C
Frequency range	100 MHz to 8 GHz	100 MHz to 18 GHz
Insertion loss	$<2.5 \mathrm{~dB}(100 \mathrm{MHz}$ to 4 GHz$)$	$<3.5 \mathrm{~dB}(100 \mathrm{MHz}$ to 8 GHz$)$
	$<3.5 \mathrm{~dB}(4 \mathrm{GHz}$ to 8 GHz$)$	$<4.5 \mathrm{~dB}(8 \mathrm{GHz}$ to 18 GHz$)$
Isolation	80 dB	80 dB
Return loss (ON \& Common Port)	$>15 \mathrm{~dB}$	$>10 \mathrm{~dB}$
Return loss (OFF Port)	$>15 \mathrm{~dB}$	$>10 \mathrm{~dB}$
Switching speed rise/fall	450 ns (typical)	450 ns (typical)
Characteristic impedance	50Ω (nominal)	50Ω (nominal)
Connectors	SMA (f)	SMA (f)

1. Switching speed is based on 50% TTL to 90% RF.

Absolute maximum ratings

Parameters	P9402A/C		P9404A/C	
	MIN	MAX	MIN	MAX
RF input power (average)		+23 dBm		+27 dBm
$\mathbf{V}_{\text {cC }}$ DC Supply Voltage	+4.5 V	+5.5 V	+4.5 V	+5.5 V
$\mathbf{V}_{\text {EE }}$ DC Supply Voltage	-5.5 V	-4.5 V	-5.5 V	-4.5 V
CTRL input high voltage	+2.4 V	$\mathrm{~V}_{\mathrm{cc}}$	+2.4 V	$\mathrm{~V}_{\mathrm{cc}}$
CTRL input low voltage	-0.8 V	+0.8 V	-0.8 V	+0.8 V

Norminal current drawn for SPDT ${ }^{1}$			Norminal current drawn for SP4T ${ }^{2}$			
Conditions	+5 V pin	-5 V pin	Conditions	+5 V pin	-5V pin	Remarks
Port 1 ON	30 mA	25mA	Port 1 ON	90 mA	30 mA	Either port ON the current drawn at the pin is the same
Port 2 OFF	30 mA	25mA	Port 2 OFF	90 mA	30 mA	Either port ON the current drawn at the pin is the same
Port 1 OFF	30 mA	25mA	Port 3 OFF	90 mA	30 mA	Either port ON the current drawn at the pin is the same
Port 2 ON	30 mA	25mA	Port 4 OFF	90 mA	30 mA	Either port ON the current drawn at the pin is the same
Port 1 and Port 2 OFF	60 mA	OmA	All Port OFF	120 mA	OmA	

1. Nominal current drawn on respective CTRL pin when Vcc is applied: 12uA
2. Nominal current drawn on respective CTRL pin when Vcc is applied: 8 uA

Environmental Specifications

The P940xA/C PIN diode switches are designed to fully comply with Agilent Technologies' product operating environment specifications. The following summarizes the environmental specifications for these products.

Temperature

Operating $-55^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
Storage $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Cycling $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, 10 cycles @ $20^{\circ} \mathrm{C}$ per minute,
20 minutes dwell time per MIL-STD-833F, Method 1010.8,
Condition C (modified)

Humidity

Operating 50% to 95% RH @ $40^{\circ} \mathrm{C}$, one 24 hour cycle, repeated 5 times
Storage $<90 \%$ RH @ $65^{\circ} \mathrm{C}$ for 24 hours

Shock

Half-sine, 1000 G @ $0.5 \mathrm{~ms}, 3$ shock pulses per orientation, 18 total smoothed per MIL-STD-833F, Method 2002.4, Condition B (modified)

Vibration

Broadband, 50 to $2000 \mathrm{~Hz}, 7.0 \mathrm{Grms}$, 15 minutes, per MIL-STD-833F, random Method 2026-1 (modified)

Altitude

Storage $<15,300$ meters (50,000 feet)

ESD immunity

Direct discharge 2.5 kV per IEC 61000-4-2
Air discharge 3.5 kV per IEC 61000-4-2

Mechanical Dimensions

Dimensions in millimeters and inches.

Model	Weight
P9402A/C	50 g
P9404A/C	105 g

Figure 3. Product dimensions for P9404A/C

Typical performance

Figure 4. P9402A insertion loss vs. frequency (typical)

Figure 6. P9402A return loss (OFF) vs. frequency (typical)

Figure 8. P9402C insertion loss vs. frequency (typical)

Figure 5. P9402A return loss (ON) vs. frequency (typical)

Figure 7. P9402A isolation vs. frequency (typical)

Figure 9. P9402C return loss (ON) vs. frequency (typical)

Figure 10. P9402C return loss (OFF) vs. frequency (typical)

Figure 12. P9404A insertion loss vs. frequency (typical)

Figure 14. P9404A return loss (OFF) vs. frequency (typical)

Figure 11. P9402C isolation vs. frequency (typical)

Figure 13. P9404A return loss (ON) vs. frequency (typical))

Figure 15. P9404A isolation vs. frequency (typical)

Frequency (GHz)

$$
\text { -Specification } \quad \text { - Insertion loss }
$$

Figure 16. P9404C insertion loss vs. frequency (typical)

Figure 18. P9404C return loss (OFF) vs. frequency (typical)

Figure 17. P9404C return loss (ON) vs. frequency (typical)

Figure 19. P9404C isolation vs. frequency (typical)

Ordering Information

P9402A 100 MHz to 8 GHz SPDT PIN Switch P9402C 100 MHz to 18 GHz SPDT PIN Switch P9404A 100 MHz to 8 GHz SP4T PIN Switch P9404C 100 MHz to 18 GHz SP4T PIN Switch
www.agilent.com/find/mta

Related Literature

Selecting the right switch technology for your application, literature number 5989-5189EN

www.agilent.com
 www.agilent.com/find/mta

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

www.agilent.com/find/advantageservices

www.agilent.com/quality

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas

Canada	(877) 8944414
Brazil	(11) 41973500
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4570131515
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1314520200$

For other unlisted countries:
www.agilent.com/find/contactus
Revised: June 8, 2011

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2009, 2010, 2011
Published in USA, June 28, 2011
5989-6695EN

